Dada una cuadrícula de altura h y de ancho w, se te pide calcular la suma máxima que puede obtenerse al desplazarse desde la parte superior hasta la parte inferior. En cada paso, solo se permite moverse a las 3 celdas adyacentes que están justo abajo. En otras palabras, si te encuentras en la posición (r, c), puedes pasar a (r + 1, c - 1), (r + 1, c), o (r + 1, c + 1). Por eso lo llamamos una suma al caer: descendemos desde la parte superior de la cuadrícula hasta el fondo. Encuentra la máxima suma posible en el recorrido.
ㅤ
o
ㅤ
ㅤ
↙️
⬇️
↘️
ㅤ
ㅤ
ㅤ
ㅤ
ㅤ
ㅤ
ㅤ
ㅤ
ㅤ
Entrada
La primera línea de la entrada contiene dos números enteros h y w (1 ≤ h, w ≤ 100).
Las siguientes h líneas contienen w números (-100 ≤ ≤ 100), que representan los valores de la cuadrícula en la fila r y la columna c.
Salida
El programa debe imprimir la suma máxima que se pueda obtener entre todas las posibles rutas de caída.